

Fun with Unicode
- an overview about Unicode dangers

by Thomas Skora

Overview

● Short Introduction to Unicode/UTF-8
● Fooling charset detection
● Ambigiuous Encoding
● Ambigiuous Characters
● Normalization overflows your buffer
● Casing breaks your XSS filter
● Unicode in domain names – how to short payloads
● Text Direction

Unicode/UTF-8

● Unicode = Character set
● Encodings:

– UTF-8: Common standard in web, …

– UTF-16: Often used as internal representation

– UTF-7: if the 8th bit is not safe

– UTF-32: yes, it exists...

UTF-8

● Often used in Internet communication, e.g. the web.
● Efficient: minimum length 1 byte
● Variable length, up to 7 bytes (theoretical).
● Downwards-compatible: First 127 chars use ASCII

encoding
● 1 Byte: 0xxxxxxx
● 2 Bytes: 110xxxxx 10xxxxxx
● 3 Bytes: 1110xxxx 10xxxxxx 10xxxxxx
● ...got it? ;-)

UTF-16

● Often used for internal representation: Java,
.NET, Windows, …

● Inefficient: minimum length per char is 2 bytes.
● Byte Order? Byte Order Mark! → U+FEFF

– BOM at HTML beginning overrides character set
definition in IE.

● Y\x00o\x00u\x00 \x00k\x00n\x00o\x00w\x00
\x00t\x00h\x00i\x00s\x00?\x00

UTF-7

● Unicode chars in not 8 bit-safe environments.
Used in SMTP, NNTP, …

● Personal opinion: browser support was an inside
job of the security industry.

● Why? Because:
<script>alert(1)</script> ==
+Adw-script+AD4-alert(1)+ADw-/script+AD4-

● Fortunately (for the defender) support is dropped
by browser vendors.

Byte Order Mark

● U+FEFF
● Appears as: ï»¿
● W3C says: BOM has priority over declaration

– IE 10+11 just dropped this insecure behavior, we should
expect that it comes back.

– http://www.w3.org/International/tests/html-css/character-
encoding/results-basics#precedence

– http://www.w3.org/International/questions/qa-byte-order
-mark.en#bomhow

● If you control the first character of a HTML document,
then you also control its character set. → XSS!

http://www.w3.org/International/tests/html-css/character-encoding/results-basics#precedence
http://www.w3.org/International/tests/html-css/character-encoding/results-basics#precedence
http://www.w3.org/International/questions/qa-byte-order-mark.en#bomhow
http://www.w3.org/International/questions/qa-byte-order-mark.en#bomhow

Ambiguous Encoding

● UTF-8 demands shortest encoding, but parsers/filters possibly
do something different.

● Example „<“:
– 0x3C = 00111100

– 0xC0 0xBC = 11000000 10111100 = 000 00111100
– Second byte encodes leading zeros!

– Now think about dumb, encoding-unaware XSS filters which filter
0x3C, but not the overlong sequences.

– Fortunately browsers ignore it, so further steps on server side are
needed.

– Test it with Burp Intruder, Payload Type „Illegal Unicode“

Ambiguous Characters

● Ä != Ä
– Ä = U+00C4
– = LATIN CAPITAL LETTER A WITH DIAERESIS (= NFC)

– Ä = U+0041 + U+0308
= LATIN CAPITAL LETTER A + COMBINING DIAERESIS (= NFD)

● Normalize before compare
● Normalization Forms:

http://www.unicode.org/reports/tr15/#Norm_Forms
● Useful Link:

http://software.hixie.ch/utilities/cgi/unicode-decoder/utf8-decod
er

http://www.unicode.org/reports/tr15/#Norm_Forms
http://software.hixie.ch/utilities/cgi/unicode-decoder/utf8-decoder
http://software.hixie.ch/utilities/cgi/unicode-decoder/utf8-decoder

Decomposition

● Previous examples decomposition expands to 2
characters

● U+FDFA: ARABIC LIGATURE SALLALLAHOU
ALAYHE WASALLAM

● This is: „ وسلم العليه “صلى
● 18 characters!
● Remember while writing native code: some Unicode

normalization blows your input up! → Buffer Overflows!
● http://fallout.skora.net/security/unicode-lists.html

http://fallout.skora.net/security/unicode-lists.html

Upper-/Lower-Casing

● XSS-“filters“ seen in audits: first filtering „SCRIPT“ etc., then
upper casing

● This breaks our „<script src=...></script>“ attack payload to <
SRC=...></>

● Unicode rushes to the rescue!
– Some (for us germans) strange chars case to latin chars

– uc(ſ)=S (U+017f), uc(ı)=I (U+0131)

– <ſcrıpt ſrc=...></ſcrıpt> => <SCRIPT SRC=...></SCRIPT>

● http://prompt.ml/9
● http://fallout.skora.net/security/unicode-lists.html

http://prompt.ml/9
http://fallout.skora.net/security/unicode-lists.html

Strange chars in URLs

● These are single characters:
ffi,Rs,FAX,TEL,㎖ ,㏄ ,㏖ ,...many others

● In URLs, browsers convert them to:
ffi,Rs,FAX,TEL,ml,cc,mol etc.

● So <script src=“//ffi.㎖“ > requests script code from ffi.ml.
– URL shrinks from 6 to 3 chars.

● Also nice for phishing attacks, like Punycode domains:
– xn--pypal-4ve = pаypal

 = p + CYRILLIC SMALL LETTER A + aypal

Text Direction

● <RIGHT-TO-LEFT OVERRIDE> + gpj.exe =
exe.jpg

● Used by spammers to hide content from filters.
● Circumvent wordfilters:

<RIGHT-TO-LEFT OVERRIDE> + elohssa =
asshole

Rendering Glitches

● Unicode combining characters which break out
of their expected rendering context.

● @glitchr_ on Twitter

Conclusion

● Unicode adds much complexity
● New attack surfaces
● Links:

– Unicode Security Considerations:
http://www.unicode.org/reports/tr36/

– Unicode Security Mechanisms:
http://www.unicode.org/reports/tr39/

– Unicode Security Guide:
https://github.com/cweb/unicode-security-guide

http://www.unicode.org/reports/tr36/
http://www.unicode.org/reports/tr39/
https://github.com/cweb/unicode-security-guide

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15

